Library Coq.ZArith.Zhints
This file centralizes the lemmas about Z, classifying them
    according to the way they can be used in automatic search  
 
 Lemmas which clearly leads to simplification during proof search are  declared as Hints. A definite status (Hint or not) for the other lemmas  remains to be given 
 
 Structure of the file  
 Lemmas involving positive and compare are not taken into account 
- simplification lemmas (only those are declared as Hints)
- reversible lemmas relating operators
- useful Bottom-up lemmas
- irreversible lemmas with meta-variables
- unclear or too specific lemmas
- lemmas to be used as rewrite rules
Require Import BinInt.
Require Import Zorder.
Require Import Zmin.
Require Import Zabs.
Require Import Zcompare.
Require Import Znat.
Require Import auxiliary.
Require Import Zmisc.
Require Import Wf_Z.
#[global]
Hint Resolve
Reversible simplification lemmas (no loss of information)
Should clearly be declared as hints
  Zsucc_eq_compat 
  
Lemmas ending by Z.gt 
  Zsucc_gt_compat 
Zgt_succ
Zorder.Zgt_pos_0
Zplus_gt_compat_l
Zplus_gt_compat_r
  
Zgt_succ
Zorder.Zgt_pos_0
Zplus_gt_compat_l
Zplus_gt_compat_r
Lemmas ending by Z.lt 
  Pos2Z.is_pos 
Z.lt_succ_diag_r
Zsucc_lt_compat
Z.lt_pred_l
Zplus_lt_compat_l
Zplus_lt_compat_r
  
Z.lt_succ_diag_r
Zsucc_lt_compat
Z.lt_pred_l
Zplus_lt_compat_l
Zplus_lt_compat_r
Lemmas ending by Z.le 
  Nat2Z.is_nonneg 
Pos2Z.is_nonneg
Z.le_refl
Z.le_succ_diag_r
Zsucc_le_compat
Z.le_pred_l
Z.le_min_l
Z.le_min_r
Zplus_le_compat_l
Zplus_le_compat_r
Z.abs_nonneg
  
Pos2Z.is_nonneg
Z.le_refl
Z.le_succ_diag_r
Zsucc_le_compat
Z.le_pred_l
Z.le_min_l
Z.le_min_r
Zplus_le_compat_l
Zplus_le_compat_r
Z.abs_nonneg
Irreversible simplification lemmas
Probably to be declared as hints, when no other simplification is possible
  Z_eq_mult 
Zplus_eq_compat
  
Zplus_eq_compat
Lemmas ending by Z.ge 
  Zorder.Zmult_ge_compat_r 
Zorder.Zmult_ge_compat_l
Zorder.Zmult_ge_compat
  
Zorder.Zmult_ge_compat_l
Zorder.Zmult_ge_compat
Lemmas ending by Z.lt 
  Zorder.Zmult_gt_0_compat 
Z.lt_lt_succ_r
  
Z.lt_lt_succ_r
Lemmas ending by Z.le 
  Z.mul_nonneg_nonneg 
Zorder.Zmult_le_compat_r
Zorder.Zmult_le_compat_l
Z.add_nonneg_nonneg
Z.le_le_succ_r
Z.add_le_mono
: zarith.
    
  Zorder.Zmult_le_compat_r
Zorder.Zmult_le_compat_l
Z.add_nonneg_nonneg
Z.le_le_succ_r
Z.add_le_mono
: zarith.
